What is an Artificial Neural Network?
Artificial Neural Networks are computational models and inspire by the human brain. Many of the recent advancements have been made in the field of Artificial Intelligence, including Voice Recognition, Image Recognition, Robotics using Artificial Neural Networks. Artificial Neural Networks are the biologically inspired simulations performed on the computer to perform certain specific tasks like 
Artificial Neural Networks, in general  is a biologically inspired network of artificial neurons configured to perform specific tasks. These biological methods of computing are known as the next major advancement in the Computing Industry.
What is a Neural Network?
The term ‘Neural’ has origin from the human (animal) nervous system’s basic functional unit ‘neuron’ or nerve cells present in the brain and other parts of the human (animal) body. A neural network is a group of algorithms that certify the underlying relationship in a set of data similar to the human brain. The neural network helps to change the input so that the network gives the best result without redesigning the output procedure. You can also learn more about ONNX in this insight.
Parts of Neuron and their Functions
The typical nerve cell of the human brain comprises of four parts 
It receives signals from other neurons.
It sums all the incoming signals to generate input.
When the sum reaches a threshold value, the neuron fires, and the signal travels down the axon to the other neurons.
The point of interconnection of one neuron with other neurons. The amount of signal transmitted depends upon the strength (synaptic weights) of the connections. The connections can be inhibitory (decreasing strength) or excitatory (increasing strength) in nature. So, a neural network, in general, has a connected network of billions of neurons with a trillion of interconnections between them.
What is the Difference Between Computer and Human Brain?
Artificial Neural Networks (ANN) and Biological Neural Networks (BNN)  Difference
Characteristics 
Artificial Neural Network 
Biological(Real) Neural Network 
Speed 
Faster in processing information. Response time is in nanoseconds. 
Slower in processing information. The response time is in milliseconds. 
Processing 
Serial processing. 
Massively parallel processing. 
Size & Complexity 
Less size & complexity. It does not perform complex pattern recognition tasks. 
A highly complex and dense network of interconnected neurons containing neurons of the order of 1011 with 1015 of interconnections.<strong 
Storage 
Information storage is replaceable means replacing new data with an old one. 
A highly complex and dense network of interconnected neurons containing neurons of the order of 1011 with 1015 of interconnections. 
Fault tolerance 
Fault intolerant. Corrupt information cannot retrieve in case of failure of the system. 
Information storage is adaptable means new information is added by adjusting the interconnection strengths without destroying old information. 
Control Mechanism 
There is a control unit for controlling computing activities 
No specific control mechanism external to the computing task. 
Artificial Neural Networks with Biological Neural Network  Similarity
Neural Networks resemble the human brain in the following two ways 
 A neural network acquires knowledge through learning.
 A neural network's knowledge is a store within interneuron connection strengths known as synaptic weights.
VON NEUMANN ARCHITECTURE BASED COMPUTING

ANN BASED COMPUTING

Serial processing  processing instruction and problem rule one at the time (sequential) 
Parallel processing  several processors perform simultaneously (multitasking) 
Function logically with a set of if & else rules  rulebased approach 
Function by learning pattern from a given input (image, text or video, etc.) 
Programmable by higherlevel languages such as C, Java, C++, etc. 
ANN is, in essence, the program itself. 
Requires either big or errorprone parallel processors 
Use of applicationspecific multichips. 
Artificial Neural Network (ANN) With Biological Neural Network (BNN)  Comparison
 The Biological Neural Network's dendrites are analogous to the weighted inputs based on their synaptic interconnection in the Artificial Neural Network.
 The cell body is comparable to the artificial neuron unit in the Artificial Neural Network, comprising summation and threshold unit.
 Axon carries output that is analogous to the output unit in the case of an Artificial Neural Network. So, ANN is model using the working of basic biological neurons.
How Does Artificial Neural Network Works?
 Artificial Neural Networks can be viewed as weighted directed graphs in which artificial neurons are nodes, and directed edges with weights are connections between neuron outputs and neuron inputs.
 The Artificial Neural Network receives information from the external world in pattern and image in vector form. These inputs are designated by the notation x(n) for n number of inputs.
 Each input is multiplied by its corresponding weights. Weights are the information used by the neural network to solve a problem. Typically weight represents the strength of the interconnection between neurons inside the Neural Network.
 The weighted inputs are all summed up inside the computing unit (artificial neuron). In case the weighted sum is zero, bias is added to make the output not zero or to scale up the system response. Bias has the weight and input always equal to ‘1'.
 The sum corresponds to any numerical value ranging from 0 to infinity. To limit the response to arrive at the desired value, the threshold value is set up. For this, the sum is forward through an activation function.
 The activation function is set to the transfer function to get the desired output. There are linear as well as the nonlinear activation function.
What are the commonly used activation functions?
Some of the commonly used activation function is  binary, sigmoidal (linear) and tan hyperbolic sigmoidal functions(nonlinear).
 Binary  The output has only two values, either 0 and 1. For this, the threshold value is set up. If the net weighted input is greater than 1, the output is assumed as one otherwise zero.
 Sigmoidal Hyperbolic  This function has an ‘S’ shaped curve. Here the tan hyperbolic function is used to approximate output from net input. The function is defined as  f (x) = (1/1+ exp(????x)) where ????  steepness parameter.
Click to read about Overview of Artificial Intelligence & Role of NLP in Big Data
Types of Neural Networks in Artificial Intelligence
Parameter

Types

Description

Based on the connection pattern 
FeedForward, Recurrent 
Feedforward  In which graphs have no loops. Recurrent  Loops occur because of feedback. 
Based on the number of hidden layers 
Singlelayer, MultiLayer 
Single Layer  Having one secret layer. E.g., Single Perceptron Multilayer  Having multiple secret layers. Multilayer Perceptron 
Based on the nature of weights 
Fixed, Adaptive 
Fixed  Weights are a fixed priority and not changed at all. Adaptive  Updates the weights and changes during training. 
Based on the Memory unit 
Static, Dynamic 
Static  Memoryless unit. The current output depends on the current input. E.g., Feedforward network. Dynamic  Memory unit  The output depends upon the current input as well as the current output. E.g., Recurrent Neural Network 
Neural Network Architecture Types

Perceptron Model in Neural Networks
Neural Network is having two input units and one output unit with no hidden layers. These are also known as ‘singlelayer perceptrons.'

Radial Basis Function Neural Network
These networks are similar to the feedforward Neural Network, except radial basis function is used as these neurons' activation function.

Multilayer Perceptron Neural Network
These networks use more than one hidden layer of neurons, unlike singlelayer perceptron. These are also known as Deep Feedforward Neural Networks.
Type of Neural Network in which hidden layer neurons have selfconnections. Recurrent Neural Networks possess memory. At any instance, the hidden layer neuron receives activation from the lower layer and its previous activation value.

Long ShortTerm Memory Neural Network (LSTM)
The type of Neural Network in which memory cell is incorporated into hidden layer neurons is called LSTM network.
A fully interconnected network of neurons in which each neuron is connected to every other neuron. The network is trained with input patterns by setting a value of neurons to the desired pattern. Then its weights are computed. The weights are not changed. Once trained for one or more patterns, the network will converge to the learned patterns. It is different from other Neural Networks.

Boltzmann Machine Neural Network
These networks are similar to the Hopfield network, except some neurons are input, while others are hidden in nature. The weights are initialized randomly and learn through the backpropagation algorithm.

Convolutional Neural Network
Get a complete overview of Convolutional Neural Networks through our blog Log Analytics with Machine Learning and Deep Learning.
It is the combined structure of different types of neural networks like multilayer perceptron, Hopfield Network, Recurrent Neural Network, etc., which are incorporated as a single module into the network to perform independent subtask of whole complete Neural Networks.
In this type of Artificial Neural Network, electrically adjustable resistance material is used to emulate synapse instead of software simulations performed in the neural network.
Click to explore Generative Adversarial Networks
Hardware Architecture for Neural Networks
Two types of methods are used for implementing hardware for Neural Networks.
 Software simulation in conventional computer
 A special hardware solution for decreasing execution time.
When Neural Networks are used with fewer processing units and weights, software simulation is performed on the computer directly. E.g., voice recognition, etc. When Neural Network Algorithms developed to the point where useful things can be done with 1000's neurons and 10000's of synapses, highperformance Neural network hardware will become essential for practical operation. E.g., GPU ( Graphical processing unit) in the case of Deep Learning algorithms in object recognition, image classification, etc. The implementation's performance is measured by connection per the second number (cps), i.e., the number of the data chunk is transported through the neural network's edges. While the performance of the learning algorithm is measured in the connection updates per second (cups)
Learning Techniques in Artificial Neural Networks
The neural network learns by adjusting its weights and bias (threshold) iteratively to yield the desired output. These are also called free parameters. For learning to take place, the Neural Network is trained first. The training is performed using a defined set of rules, also known as the learning algorithm.
Training Algorithms For Artificial Neural Networks

Gradient Descent Algorithm
This is the simplest training algorithm used in the case of a supervised training model. In case the actual output is different from the target output, the difference or error is find out. The gradient descent algorithm changes the weights of the network in such a manner to minimize this mistake.

Back Propagation Algorithm
It is an extension of the gradientbased delta learning rule. Here, after finding an error (the difference between desired and target), the error is propagated backward from the output layer to the input layer via the hidden layer. It is used in the case of Multilayer Neural Network.
Learning Data Sets in Artificial Neural Networks
A set of examples used for learning is to fit the parameters [i.e., weights] of the network. One approach comprises one full training cycle on the training set.
A set of examples used to tune the parameters [i.e., architecture] of the network. For example, to choose the number of hidden units in a Neural Network.
A set of examples is used only to assess the performance [generalization] of a fully specified network or apply successfully to predict output whose input is known.
Read more about Capsule Networks Best Practices and Frameworks
Five Algorithms to Train a Neural Network
 Hebbian Learning Rule
 Self  Organizing Kohonen Rule
 Hopfield Network Law
 LMS algorithm (Least Mean Square)
 Competitive Learning
Artificial Neural Network Architecture
A typical Neural Network contains a large number of artificial neurons called units arranged in a series of layers. In typical Artificial Neural Network comprises different layers 
 Input layer  It contains those units (Artificial Neurons) which receive input from the outside world on which the network will learn, recognize about, or otherwise process.
 Output layer  It contains units that respond to the information about how it learn any task.
 Hidden layer  These units are in between input and output layers. The hidden layer's job is to transform the input into something that the output unit can use somehow.
Connect Neural Networks, which means say each hidden neuron links completely to every neuron in its previous layer(input) and the next layer (output) layer.
Learning Techniques in Neural Networks
In this learning, the training data is input to the network, and the desired output is known weights are adjusted until production yields desired value.
Use the input data to train the network whose output is known. The network classifies the input data and adjusts the weight by feature extraction in input data.
Here, the output value is unknown, but the network provides feedback on whether the output is right or wrong. It is SemiSupervised Learning.
The weight vector adjustment and threshold adjustment are made only after the training set is shown to the network. It is also called Batch Learning.
The adjustment of the weight and threshold is made after presenting each training sample to the network.
Learning and Development in Neural Networks
Learning occurs when the weights inside the network get updated after many iterations. For example  Suppose we have inputs in the form of patterns for two different classes of patterns  I & 0 as shown and b bias and y as the desired output.
Pattern

y

x1

x2

x3

x4

x5

x6

x7

x8

x9

b

I

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
O

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
We want to classify input patterns into either pattern ‘I’ & ‘O.' Following are the steps performed:
 Nine inputs from x1  x9 and bias b (input having weight value 1) are fed to the network for the first pattern.
 Initially, weights are initialized to zero.
 Then weights are updated for each neuron using the formulae: Δ wi = xi y for i = 1 to 9 (Hebb’s Rule)
 Finally, new weights are found using the formulae:
 wi(new) = wi(old) + Δwi
 Wi(new) = [111111 1111]
 The second pattern is input to the network. This time, weights are not initialized to zero. The initial weights used here are the final weights obtained after presenting the first pattern. By doing so, the network.
 The steps from 1  4 are repeated for second inputs.
 The new weights are Wi(new) = [0 0 0 2 2 2 000]
So, these weights correspond to the learning ability of the network to classify the input patterns successfully.
What are the 4 Different Techniques of Neural Networks?

Classification Neural Network
A Neural Network can be trained to classify a given pattern or dataset into a predefined class. It uses Feedforward Networks.

Prediction Neural Network
A Neural Network can be trained to produce outputs that are expected from a given input. E.g.,  Stock market prediction.

Clustering Neural Network
The Neural network can identify a unique feature of the data and classify them into different categories without any prior knowledge of the data. Following networks are used for clustering 
 Competitive networks
 Adaptive Resonance Theory Networks
 Kohonen SelfOrganizing Maps.

Association Neural Network
Train the Neural Network to remember the particular pattern. When the noise pattern is presented to the network, the network associates it with the memory's closest one or discards it. E.g., Hopfield Networks, which performs recognition, classification, and clustering, etc.
Neural Networks for Pattern Recognition
Pattern recognition is the study of how machines can observe the environment, learn to distinguish patterns of interest from their background, and make sound and reasonable decisions about the patterns' categories. Some examples of the pattern are  fingerprint images, a handwritten word, a human face, or a speech signal. Given an input pattern, its recognition involves the following task 
 Supervised classification  Given the input pattern is known as the member of a predefined class.
 Unsupervised classification  Assign pattern is to a hitherto unknown class.
So, the recognition problem here is essentially a classification or categorized task. The design of pattern recognition systems usually involves the following three aspects
 Data acquisition and preprocessing
 Data representation
 Decision Making
Approaches For Pattern Recognition
 Template Matching
 Statistical
 Syntactic Matching
 Artificial Neural Networks
Following Neural Network architectures used for Pattern Recognition 
 Multilayer Perceptron
 Kohonen SOM (Self Organizing Map)
 Radial Basis Function Network (RBF)
Neural Network for Deep Learning
Following Neural Network, architectures are used in Deep Learning
 Feedforward neural networks
 Recurrent neural network
 Multilayer perceptrons (MLP)
 Convolutional neural networks
 Recursive neural networks
 Deep belief networks
 Convolutional deep belief networks
 SelfOrganizing Maps
 Deep Boltzmann machines
 Stacked denoising autoencoders
Neural Networks and Fuzzy Logic
Fuzzy logic refers to the logic developed to express the degree of truthiness by assigning values between 0 and 1, unlike traditional boolean logic representing 0 and 1. Fuzzy logic and Neural networks have one thing in common. They can be used to solve pattern recognition problems and others that do not involve any mathematical model. Systems combining both fuzzy logic and neural networks are neurofuzzy systems. These systems (Hybrid) can combine the advantages of both neural networks and fuzzy logic to perform in a better way. Fuzzy logic and Neural Networks have been integrated to use in the following applications 
 Automotive engineering
 Applicant screening of jobs
 Control of crane
 Monitoring of glaucoma
In a hybrid (neurofuzzy) model, Neural Networks Learning Algorithms are fused with the fuzzy reasoning of fuzzy logic. The neural network determines the values of parameters, while ifthen rules are controlled by fuzzy logic.
Neural Network for Machine Learning
 Multilayer Perceptron (supervised classification)
 Back Propagation Network (supervised classification)
 Hopfield Network (for pattern association)
 Deep Neural Networks (unsupervised clustering)
What are the Applications of Neural Networks?
Neural networks have been successfully applied to the broad spectrum of dataintensive applications, such as:
Application 
Architecture / Algorithm 
Activation Function 
Process modeling and control 
Radial Basis Network 
Radial Basis 
Machine Diagnostics 
Multilayer Perceptron 
Tan Sigmoid Function 
Portfolio Management 
Classification Supervised Algorithm 
Tan Sigmoid Function 
Target Recognition 
Modular Neural Network 
Tan Sigmoid Function 
Medical Diagnosis 
Multilayer Perceptron 
Tan Sigmoid Function 
Credit Rating 
Logistic Discriminant Analysis with ANN, Support Vector Machine 
Logistic function 
Targeted Marketing 
Back Propagation Algorithm 
Logistic function 
Voice recognition 
Multilayer Perceptron, Deep Neural Networks( Convolutional Neural Networks) 
Logistic function 
Financial Forecasting 
Backpropagation Algorithm 
Logistic function 
Intelligent searching 
Deep Neural Network 
Logistic function 
Fraud detection 
Gradient  Descent Algorithm and Least Mean Square (LMS) algorithm. 
Logistic function 
What are the Advantages of Neural Networks?
 A neural network can perform tasks that a linear program can not.
 When an element of the neural network fails, its parallel nature can continue without any problem.
 A neural network learns and reprogramming is not necessary.
 It can be implemented in any application.
 It can be performed without any problem.
What are the Limitations of Neural Networks?
 The neural network needs training to operate.
 The architecture of a neural network is different from the architecture of microprocessors. Therefore, emulation is necessary.
 Requires high processing time for large neural networks.
Face Recognition Using Artificial Neural Networks
Face recognition entails comparing an image with a database of saved faces to identify the person in that input picture. It is a mechanism that involves dividing images into two parts; one containing targets (faces) and one providing the background. The associated assignment of face detection has direct relevance to the fact that images need to analyze and faces identified earlier than they can be recognized.
Learning Rules in Neural Network
The learning rule is a type of mathematical logic. It encourages a Neural Network to gain from the present conditions and upgrade its efficiency and performance. The learning procedure of the brain modifies its neural structure. The expanding or diminishing quality of its synaptic associations rely upon their activity. Learning rules in the Neural network:
 Hebbian learning rule; It determines how to customize the weights of nodes of a system.
 Perceptron learning rule; Network starts its learning by assigning a random value to each load.
 Delta learning rule; Modification in a node's sympatric weight is equal to the multiplication of error and the input.
 Correlation learning rule; It is similar to supervised learning.
How Can XenonStack Help You?
XenonStack can help you develop and deploy your model solutions based on Neural Networks. Whatever kind of problem you face  Prediction, Classification, or Pattern Recognition  XenonStack has a solution for you.
Fraud Detection & Prevention Services
XenonStack Fraud Detection Services offers realtime fraud analysis to increase profitability. Data Mining is beneficial to detect fraud quickly and search for spot patterns and detect fraudulent transactions. Tools for Data Mining like Machine Learning, Neural Networks, Cluster Analysis are beneficial to generate Predictive Models to prevent fraud losses.
Data Modeling Services
XenonStack offers Data Modelling using Neural Networks, Machine Learning, and Deep Learning. Data Modelling services help Enterprises to create a conceptual model based on the analysis of data objects. Deploy your Data Models on leading Cloud Service Providers like Google Cloud, Microsoft Azure, AWS, or on the container environment  Kubernetes & Docker.